

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-reportmail 1.3 documentation

Welcome to django-reportmail

Welcome to django-reportmail’s documentation.
django-reportmail is a django library to send ‘report’ mail.
Almost django management commands used as night batch processing,
and then, administrators will want to know the result as mail.
If you want to notice results of some django commands, stick with this doc and try django-reportmail.

I recommend that you get started with Installation and then head over to the Let the hacking begin.

Why django-reportmail

Of Cause, you can emit logs and aggregate them by using some another applications like Sentry.
But in some cases, you can’t deploy them and you should send the report as mail.

A situation like that, django-reportmail will be really helpful for you.

Contents

	Installation
	How to install

	Requires

	All set

	Let the hacking begin
	Basic Usage

	Reporter

	The report

	Aborting report

	Always in motion is the future...

	Advanced topics
	How to change the mail template

	How to change the way to report

	Conclusion

	API documentation
	reportmail.command module

	reportmail.reporter module

Resources

	Documentation [http://django-reportmail.readthedocs.org/]

	Github [https://github.com/hirokiky/django-reportmail/]

	PyPI [http://pypi.python.org/pypi/django-reportmail]

 Copyright 2014, Hiroki KIYOHARA.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-reportmail 1.3 documentation

Installation

Won’t you know about django-reportmail? Continue to read following documentation!
If you do, you will learn the way to setup django-reportmail.

How to install

As always, you can install django-reportmail by using pip:

pip install django-reportmail

And then, you need to fix 2 parts of settings.py.
First, Add a line ‘reportmail’ to INSTALLED_APPS to register this library for your project:

INSTALLED_APPS = (
 ...
 'reportmail',
)

And also you need to set ‘ADMINS’ settings.
Because this library will send the report mail to ‘ADMINS’ on settings.

ADMINS = (
 ('Hiroki KIYOHARA', 'hirokiky@gmail.com'),
)

SERVER_EMAIL = 'noreply@example.com'

Internally, the reason of setting ‘ADMINS’ and ‘SERVER_EMAIL’ is that django-reportmail
will send mail by calling django.core.mail.mail_admins().
For more detail, please check out the official documentation about mail_admins.
https://docs.djangoproject.com/en/1.6/topics/email/#mail-admins

Requires

django-reportmail is guaranteed to work correctly on following environments.

Python:

	2.7

	3.3

	3.4

	3.5

Django:

	1.6

	1.7

	1.8

All set

After setting up the project, you can head over to the Let the hacking begin documentation!

 Copyright 2014, Hiroki KIYOHARA.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-reportmail 1.3 documentation

Let the hacking begin

Basic Usage

It’s really easy and simple to use django-reportmail.
Only thing you should do is decorating the handle method of Django’s management command
by reportmail.command.apply_reporter():

import csv
from django.core.management.base import BaseCommand

from reportmail.command import apply_reporter

class Command(BaseCommand):
 @apply_reporter("Title")
 def handle(self, reporter, filepath, *args, **options):
 for i, l in enumerate(csv.DictReader(open(filepath))):
 reporter.append('Line {}: processed {l}'.format(i+1, l))

Then the handle method will take a reportmail.reporter.Reporter object after self.
This reporter object is an interface to store messages which you want to notify to administrators.

Reporter

The reporter object provide two method append()
and extend().

If you want to store a line of message, use reportmail.reporter.Reporter.append().
This method will take a string object and store.
And if you want to store multiple lines of message, use reportmail.reporter.Reporter.extend().
This method will take a list object of strings and store.

Something you should write is storing messages to reporter as same as logging.
You will never write another messy codes.

The report

When the command ends, administrators will get report mail.
By default, the mail will be like this:

Subject:
 Title
Body:
 Report of someapp.management.commands.some_of_your_command
 args: path/to/somecsv.csv
 options:

 result:
 Line1: processed {'somefield': 'somevalue0'}
 Line2: processed {'somefield': 'somevalue1'}
 Line3: processed {'somefield': 'somevalue2'}
 Line4: processed {'somefield': 'somevalue3'}

Notice that the subject of the mail is same value of the argument
for apply_reporter decorator.
Actually the first argument of it will used as subject of the mail.

The head of the body is the condition of management command.
The first line is the name of command (module path of the command).
The second line is command arguments. And the third line is command options.

After them, It is showing the result of command, which is actually strings
you stored by calling append()
or extend().

If some unexpected error occurred while processing the command,
apply_reporter will catch the error and report it and it’s traceback.

Aborting report

If you want to abort to send any reports (mails),
call abort() of Reporter.
It’s useful in case you don’t want to get any messages.

class Command(BaseCommand):
 @apply_reporter("Title")
 def handle(self, reporter, *args, **options):
 ...
 reporter.abort() # Nothing to say

Always in motion is the future...

You learned basic usage of django-reportmail.
But sometimes it’s not enough to address some sort of customising.

On the next, you can learn advanced topics like changing mail templates, or changing way to report.
Let’s continue Advanced topics.

 Copyright 2014, Hiroki KIYOHARA.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-reportmail 1.3 documentation

Advanced topics

In this page, you can learn more about django-reportmail.
I’ll show you helpful topics when you should address some sort of customising
especially, appearing at your job.

How to change the mail template

This section you can learn the way to change template used for rendering report mail.
To change the template, you can simply apply the path to template as the ‘template’ argument
for apply_reporter():

from django.core.management.base import BaseCommand
from reportmail.command import apply_reporter

class Command(BaseCommand):
 @apply_reporter("Title", template='yourapp/dataimport_report.txt')
 def handle(self, reporter, *args, **options):
 pass

By default, it uses reportmail/command_report.txt.

This template will take these values as context:

	stored_text: list of messages you stored.

	args: arguments of command calling.

	options: option arguments of command calling and some value of enviroments.

	command: module path for this command.

If you want to add another value, you can simply set item for the reporter.context atribute:

>>> reporter.context['some_additional_value'] = 'Hi, there'

How to change the way to report

Sometimes you want to change the way to report instead of admin mails.
To change, you can simply pass the committer argument for apply_reporter().
For instance, If you want the reporter to output result to standard output,
you can use reportmail.reporter.console_committer() like this:

from reportmail.reporter import console_committer

>>> class Command(BaseCommand):
... @apply_reporter("Title", committer=console_committer)
... def handle(self, reporter, *args, **kwargs):

django-reportmail provides two committer functions from it’s own:

	reportmail.reporter.admin_mail_committer(): sending as admin mail (default committer)

	reportmail.reporter.manager_mail_committer(): sending as manager mail

	reportmail.reporter.console_committer(): printing out to the standard output

Or, you can simply set a ‘Committer’ function to the
reportmail.reporter.Reporter.committer attribute.
The committer is the function which to get ‘subject’ and ‘body’ string as positional argument
and cause some side-effects:

>>> def my_committer(subject, body):
... print(subject)
... print(body)
>>> reporter.committer = my_committer

Notice that the implementation of this my_committer function is actually
same with console_committer.
It’s not so complex to create committers. Try it cheerfully if you want it.

Conclusion

You’ve already learned about django-reportmail good enough.
If you need some reference for this linbrary, please refer API documentation.
This will useful when you want to remind behaviors of each components.

If you’ve read whole documentation and have some questions or opinions,
please raise a new issue at
django-reportmail repository [https://github.com/hirokiky/django-reportmail]

 Copyright 2014, Hiroki KIYOHARA.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django-reportmail 1.3 documentation

API documentation

reportmail.command module

	
reportmail.command.apply_reporter(subject, template='reportmail/command_report.txt', committer=None, reporter_cls=<class 'reportmail.reporter.Reporter'>, additional_context=None)

	Adding a reporting feature for django command

You can use this as decorator for Command.handle.
and decorated handle() will get admin mail reporter object after self:

@apply_reporter("Title of report", 'path/to/template.txt')
def handle(self, reporter, *args, **options):
 ...

By default, apply_reporter will use the reportmail/command_report.txt template.
To change the template, you can put same name template.

This decorator provide these additional values for template as context:

	args: arguments of command calling.

	options: option arguments of command calling and some value of enviroments.

	command: module path for this command.

Notice that if the decorated command raises an exception,
It will caught it to add the traceback to report mail.
After added the error message, raised exception will be reraised.

	Parameters:	
	subject – Title of report

	template – Template to use rendering

	committer – Committer function to be passed for the reporter.

reportmail.reporter module

A module for reporting.

	Reporter(subject,template[,base_context,...])
	An object to store result messages and send messages by using committer.

	console_committer(subject,body)
	One of committers to send messages to standard output.

	admin_mail_committer(subject,body)
	One of committers to send messages to Admin Mails.

	manager_mail_committer(subject,body)
	One of committers to send messages to Manager Mails.

Committers is callable to make some side-effect telling result message for administrators.
Internally Reporter uses Committer to tell messages.
So committers are totally separated from reporters and reporter delegates the sending processing to
committers.

	
class reportmail.reporter.Reporter(subject, template, base_context=None, committer=None)

	An object to store result messages and send messages by using committer.

The API of Reporter is quite simple. You can store messages as same way as list, like this:

>>> reporter = Reporter()
>>> reporter.append("The first line")
>>> reporter.append("The second line")
>>> reporter.commit()

When the commit() method is called, stored messages will be sent to administrators.
You can also use committer as a context manager.
If you do, you won’t need to call commit() method explicitly.

>>> with Reporter() as reporter:
>>> reporter.append("The first line")
>>> reporter.append("The second line")

This way is better and easier to read. so I recommend to use Reporter as context manager.
Notice that the reporter won’t handle exceptions by default.
If you want reporter to catch exceptions and report about it,
write the explicit code like this:

>>> import traceback
>>> with Reporter() as reporter:
>>> try:
>>> # do_something()
>>> reporter.append("Success")
>>> except Exception as e:
>>> reporter.append(str(e) + traceback.format_exc())
>>> raise

	Parameters:	
	subject (str) – A subject of message. This value will be deliver for committer directly.

	template (str) – A string to specify a template to be used for build result message.

	base_context (dict) – Base context will be provided for the template.
By default, empty dict will be used.

	committer (callable) – Committer function.
By default, admin_mail_committer will be used.

	
abort()

	Aborting commit of this reporter.

If this method is called, self.commit() will no longer send
results.

refs https://github.com/hirokiky/django-reportmail/issues/7

	
append(text)

	Storing a line of message

	Parameters:	text (str) – A string of message to store

	
commit()

	A interface to send the report

Internally, this method will call self.committer by passing
self.subject and result of `self.render().

	
extend(text_list)

	Storing some lines of messages

	Parameters:	text (list) – A list of Some messages to store

	
render()

	Rendering result by using stored messages

The context for template will contain messages you stored
as ‘stored_text’ value.
And also it contains values from base_context of constructing.

	
reportmail.reporter.admin_mail_committer(subject, body)

	One of committers to send messages to Admin Mails.

This committer depends on django’s django.core.mail.mail_admins.
So you need to set ‘ADMINS’ of the settings file.
Notice that thin committer will fail silently to avoid
causing unexpected error while sending admin mails.

This committer will simply use the subject as mail subject,
and use body as mail body.

	
reportmail.reporter.console_committer(subject, body)

	One of committers to send messages to standard output.

This committer will simply output the message, separating
subject and body by breaking.

	
reportmail.reporter.manager_mail_committer(subject, body)

	One of committers to send messages to Manager Mails.

This committer depends on django’s django.core.mail.mail_managers.
So you need to set ‘MANAGERS’ of the settings file.
Notice that thin committer will fail silently to avoid
causing unexpected error while sending manager mails.

This committer will simply use the subject as mail subject,
and use body as mail body.

 Copyright 2014, Hiroki KIYOHARA.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	django-reportmail 1.3 documentation

 Python Module Index

 r

 			

 		
 r	

 	[image: -]
 	
 reportmail	

 	
 	
 reportmail.command	

 	
 	
 reportmail.reporter	

 Copyright 2014, Hiroki KIYOHARA.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	django-reportmail 1.3 documentation

Index

 A
 | C
 | E
 | M
 | R

A

 	

 	abort() (reportmail.reporter.Reporter method)

 	admin_mail_committer() (in module reportmail.reporter)

 	

 	append() (reportmail.reporter.Reporter method)

 	apply_reporter() (in module reportmail.command)

C

 	

 	commit() (reportmail.reporter.Reporter method)

 	

 	console_committer() (in module reportmail.reporter)

E

 	

 	extend() (reportmail.reporter.Reporter method)

M

 	

 	manager_mail_committer() (in module reportmail.reporter)

R

 	

 	render() (reportmail.reporter.Reporter method)

 	Reporter (class in reportmail.reporter)

 	

 	reportmail.command (module)

 	reportmail.reporter (module)

 Copyright 2014, Hiroki KIYOHARA.
 Created using Sphinx 1.3.1.

 _static/minus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		django-reportmail 1.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Hiroki KIYOHARA.
 Created using Sphinx 1.3.1.

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

_static/plus.png

_static/comment.png

_static/up.png

_static/file.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-close.png

